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Supplementary Notes 

Analysis of pinwheel stability and recording site variability 

Supplementary Fig. 2 illustrates an analysis of the reliability of pinwheel center 

localization, and the effect of variability in electrode localization on the relationship 

between the tuning of conductance and the local orientation distribution.  

Supplementary Fig. 2a shows the orientation angle maps in the region immediately 

surrounding each of our pinwheel cell recordings (two cells were recorded from the same 

location), calculated from all eight stimulus orientations (left) and from orientations 0°, 

45°, 90° and 135° (right).  The location of the pinwheel in the four orientation map never 

deviated from the location in the eight orientation map by more than 38 µm, the radius of 

the circles overlaid on the maps.  As shown previously1, the locations of some pinwheels 

differ substantially, as shown by the arrows in case 5.  However, we only targeted 

pinwheels with minimal differences.  Analysis of maps computed from the other four 

intermediate stimulus orientations had differences in pinwheel location of similar 

magnitude (data not shown).  Supplementary Fig. 2b shows the effects of error in 

recording location on our analysis of the relationship between the local map structure and 

the tuning of conductance (g).  For each of our recording locations, we created a “cloud” 

of 500 locations, with random scatter having a 2D gaussian distribution.  We then 

calculated the map OSI from each of these locations.  Next, we fit a line to the 

relationship between map OSI  and g OSI, just as we had for the original map locations. 

The top three panels are histograms of the slope of the linear relationship calculated from 

each of the 500 random locations having random error drawn from gaussian distributions 

with standard deviations of 49, 73 and 98 µm (from top to bottom).  The downward 
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arrow marks the slope of the fit to the data using our original localization (see Fig 3d).  

The bottom panel shows the mean +/- SEM of the slopes from these simulations for 

errors of size (SD) ranging from 13-244 µm.  Up to a SD of 73 µm, the real slope value 

falls within the mean + one SD of the distribution, suggesting that errors of localization 

up to ~75 µm would have been unlikely to change our estimate of the slope of the 

dependence of synaptic conductance tuning on the local map structure.   

 

Detailed model descriptions 

Single-compartment model neuron. We started with a single neuron model similar to 

that described by Destexhe et al2. The dynamics of the membrane potential V is described 

by 

  ( ) synLLm I
a

IEVg
dt
dVC 1

int
int −−−−= ∑ , 

where Isyn and Iint denote the synaptic and the intrinsic voltage-dependent currents, gL and 

EL denote the leak conductance and its reversal potential, Cm denotes the membrane 

capacitance, and t the time. In the single cell model the parameter values are gL = 22.74 

nS, EL =-80 mV, and Cm = 0.5nF. In the network model, we set Cm= 0.35 nF, and we 

chose E
Lg = 15.7 nS for the leak conductance of the excitatory and I

Lg  = 31.4 nS for the 

inhibitory cells, EL= -70 mV. 

Each current Iint is described by a Hodgkin-Huxley equation 
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where g  is the peak conductance, E is the reversal potential, and m(t) and h(t) are the 

activation and inactivation variables. We included three voltage dependent currents: a fast 

Na+ current and a delayed-rectifier K+ current for the generation of action potentials, and 

a slow non-inactivating K+ current responsible for spike frequency adaptation. Active 

conductances (cf. ref. 3) are given by: 

The Na+ current: 
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Parameters: VT = -58 mV, VS = -10 mV and Nag  = 17.87 µS and ENa = 50 mV. 

The ‘delayed-rectifier’ K+ current: 
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Parameters: EK = -90 mV, Kdg  = 3.46 µS . 

The non-inactivating K+ current: 
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Parameters: E
Mg  = 0.28 µS for excitatory and I

Mg  = 0.1 E
Mg  for inhibitory neurons 

(network model), i. e. spike-frequency adaptation is reduced for inhibitory neurons. 

Single cell model: E
Mg  = 0.25 µS. 

Synapses. The synaptic currents were computed using 

( ) ( ) ( )( ),j
j

jjsyn EtVtggtI −= ∑  

where gj and Ej are the time-dependent conductance and the reversal potential for the j-th 

synapse, and jg  is a scale factor (values are given below). Parameters were Ej=EE= 0 

mV and Ej=EI= -80 mV for the excitatory and inhibitory synapses. In the network model 

we furthermore distinguish between a fast AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid)-like and a slow NMDA (N-methyl-D-aspartate)-like excitatory 
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component. The dynamics of the fast excitatory and of the inhibitory synaptic 

conductance is described by 
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k

k
jj

j

j
j ttW

tg
tg

dt
d δ
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where τj is the time-constant of the j-th synapse (τj=τE= 5 ms and τj=τI= 6 ms for fast 

excitatory and inhibitory synapses), Wj is a ‘synaptic weight’ describing the impact of a 

single spike, and where the afferent spike train with spike times k
jt  is described by the 

sum of δ-functions. For a single spike (at t=0) we have 
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The values for Wj are given below. 

In the network model the total excitatory postsynaptic potential is the sum of a fast 

AMPA-like component (as modelled above) and a slow NMDA-like component with 

equal weight integrated over time. The dynamics of the NMDA-like part is modelled as a 

difference of Gaussians4, that is for a presynaptic spike at t= 0 ms, the NMDA-like 

conductance follows 
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with time constantsτ1= 80 ms and τ2= 2 ms. 
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It proved to be necessary to include a slow excitatory component into the network model 

to achieve network stability while being in a strongly recurrent mode5,6. Nevertheless, the 

slow NMDA-like excitatory component did not by itself change the tuning of 

conductances in any way compared to the case where the slow component was absent.  

Deducing the inhibition with the single cell model. Using our optically imaged 

orientation maps of cat V1, we first estimated the probability P(∆θ; x) of a neuron at 

location x with preferred orientation θ making a synaptic connection to a neuron with 

preferred orientation θ’,with ∆θ being the distance between θ and θ’ on the half-circle. 

We assumed that the connection probability is rotationally symmetric in cortical space 

and depends on the distance via an alpha-function (see text Fig. 4d). Depending on the 

preferred orientation of the neuron at x and the orientation distribution of the local 

network neighbourhood, this induces the orientation distribution P(∆θ; x). We then 

computed the local input OSI as the OSI of the orientation histogram compiled from all 

pixels with distances not larger than 250 µm and averaged P(∆θ; x) over all locations x 

with the same local input OSI (bin size 0.1) to obtain an averaged connection probability 

P(∆θ; OSI). 

The conductances induced by the model synapses scale linearly with the presynaptic 

firing rate. In the single cell model we set jg =1 for all synapses and adjusted the 

synaptic weights Wj so that mean excitatory and inhibitory synaptic conductances of size 

gL and 2gL are induced by presynaptic Poisson spike trains of 7000 sp/s and 3000 sp/s. 

Then, we calculated the membrane potential of the model cell by means of numerical 

integration of the membrane potential equation using the simulation software NEURON 
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(fixed step size of ∆t= 0.25 ms). For every combination of input firing rates we 

calculated membrane potential traces of 10 s simulated time. The spike response was then 

characterized by the time-averaged firing rate; the sub-threshold response was 

characterized by the mean membrane potential with the action potentials being removed, 

i.e., removing the membrane potential from 2 ms before to 3 ms after each crossing of the 

threshold (-54 mV). 

The tuning curve of the mean excitatory conductance for a given position in the map (as 

characterized by its local input OSI) was then calculated using the equation 
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Here, θpr= 0 deg is the preferred orientation of the model neuron, θ is the stimulus 

orientation, P(∆θ=θ’-θpr; OSI) is the estimated connection probability, and E
bgf  

determines the excitatory conductance in the absence of visual stimulation. We chose E
bgf  

= 6000 sp/s. The feedforward input was described by 
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with σ2
Aff=25 deg. For the recurrent excitatory input induced by a stimulus of orientation 

θ , we assumed 
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with σ2
rec= 20 deg. Parameter p was 0.35, i.e. 65% of the stimulus induced excitation 

were due to local recurrence. For a pinwheel neuron this leads to an excitation induced by 

the stimulus of approximately 1.5gL for the preferred orientation. For orientation domain 

neurons this leads to an excitation of approximately 2.5gL, also for the preferred 

orientation. 

Given the mean excitatory conductance and our characterization of the model neuron’s 

response, we determined for each stimulus orientation θ  the smallest synaptic inhibitory 

conductance <gI(θ;θpr=0)> necessary to obtain an orientation tuned spike response given 

by 
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i.e., we enforce self-consistency by requiring that the shape of the tuning curve for the 

spike output matches the firing rate tuning curve E
recf  assumed for computing the 

excitatory conductance. For the fit we used the mean-squared error between the desired 

output firing rate and the firing rate given by our characterization of the model neuron. 

Note that the much higher absolute value of the E
recf  is due to integration over multiple 

presynaptic neurons in the local neighbourhood which may also fire with individual peak 

responses of around 20 sp/s. 
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We then calculated the total inhibitory conductance by taking the sum of the synaptic 

inhibitory conductance and the time-averaged conductance ngg MM =  for the 

corresponding output firing rate. This is because the latter also hyperpolarizes the neuron 

and - due to its reversal potential of EK= -90 mV - is likely to contribute to the 

experimentally measured inhibitory conductances. 

The resulting total mean excitatory and inhibitory conductances were normalized to 

obtain the conductance tuning curves ge(θ) and gi(θ) (see definitions below). The strong 

background input leads to an effective membrane time constant of τ=5.8 ms. 

Supplementary Fig. 3a shows the dependence of gi and ge on the local input OSI 

together with the data points from the experiments. Supplementary Fig. 3b shows that 

the tuning of the spike response is indeed independent of the local input OSI, but the 

tuning of the sub-threshold voltage response becomes less tuned as the local input OSI 

decreases, i.e. closer to pinwheels. These results are summarized in Supplementary Fig. 

3c for all pinwheel and domain locations. Supplementary Fig. 3d,e show that the 

proposed mechanism of balancing the excitation by local inhibition is also almost 

independent of the strength of the excitation, i.e. a co-varying inhibition can preserve 

sharp and location invariant spike tuning. 

Network model architecture. Our network model consists of two coupled two-

dimensional layers of excitatory and inhibitory Hodgkin-Huxley-type point neurons. For 

simulations with the artificial orientation map, we used a grid of 128 x 128 neurons for 

the excitatory layer and 1/3 x 1282 neurons placed at random locations in the inhibitory 
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layer. For simulations with the optically imaged orientation maps we used a grid of 90 x 

90 neurons for both layers. The two 90 x 90 grids of excitatory and inhibitory ‘inner’ 

neurons (corresponding to an area 2.25 x 2.25 mm2) were then centered within a larger 

114 x 114 grid (corresponding to an area 2.8 x 2.8 mm2) of preferred orientations in order 

to avoid boundary effects. Neurons that are not ‘inner’ neurons are called ‘surrounding’ 

neurons. These neurons are not modelled explicitly; they contribute to the lateral 

excitation and inhibition according to an average spike tuning. Thus the network model 

contained 75% excitatory and 25% inhibitory cells. All model cells received afferent, 

recurrent and background synaptic currents. 

Connection probabilities in the network model. Every neuron receives afferent input 

from NAff = 50 excitatory synapses. Each excitatory neuron receives recurrent excitatory 

input from NEE = 60 and recurrent inhibitory input from NEI = 40 neurons. Each 

inhibitory neuron receives its recurrent excitatory input from NIE = 60 and recurrent 

inhibitory input from NII = 20 neurons. All recurrent connections to a given neuron were 

sampled based on a rotationally symmetric probability distribution having the shape of a 

Gaussian: 
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where x is the distance in µm and σ = 125 µm. For our artificial map we assume an 

average distance of 500 µm between pinwheel centres. 
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The connection probabilities reflect the measured local circuitry. Long-range connections 

have not been incorporated into the model. In the network model we set Wj=0.3 for all 

synapses. The following values were used for the different types: L
E
Aff gg 38=  (afferent 

synapses to an excitatory neuron), L
I
Aff gg 32=  (afferent synapses to an inhibitory 

neuron), E
AffEE gg 12.2=  (recurrent excitation of excitatory neurons), E

AffIE gg =  

(recurrent excitation of inhibitory neurons), E
AffEI gg 8.2=  (recurrent inhibition of 

excitatory neurons), and E
AffII gg 8.0=  (recurrent inhibition of inhibitory neurons). The 

jg  for an individual synapse is determined by normalizing the above values with respect 

to the number of synapses of the corresponding type connected to the neuron. The 

recurrent connections were modelled to have a finite axonal time delay that was Gaussian 

distributed with mean 4 ms and standard deviation 2 ms for excitatory neurons and mean 

1.25 ms and standard deviation 1 ms for inhibitory neurons. Delay times below the time 

resolution were set to the integration time step (instantaneous delay). 

The model neurons additionally receive background synaptic inputs. The synaptic 

background conductances gbg are described by a stochastic  process similar to an 

Ornstein-Uhlenbeck process with the following update rule2: 

).1,0()/exp(])([)( 00 NAtgtggttg bgbgbgbg ⋅+∆−−+=∆+ τ  

g0 is the average conductance, τ   is the background synaptic time constant, A is the 

amplitude coefficient and N(0,1) is a normally distributed random number with zero 
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mean and unit standard deviation. The amplitude coefficient has the following analytic 

expression 

)]2exp(1[
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where D is the diffusion coefficient 
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Numerical values for the background conductances are τ=τe= 2.7 ms for excitatory 

and,τ=τi= 10.5 ms for the inhibitory time constant, σ=σe= 0.01gL for the variance of the 

excitatory, σ=σι= 0.01gL for the variance of the inhibitory conductance and g0=ge0= 

0.56gL for the mean excitatory and g0=gi0= 1.84gL for the mean inhibitory conductance. 

The reversal potential for the background conductances is Ee= -5 mV and Ei= -70 mV. 

This choice of parameters set the effective membrane time constant of the model 

excitatory neurons to τE=5.2 ms and of the model inhibitory neurons to τI=4.2 ms. 

Afferent input: The feedforward input consists of Poisson spike trains with a maximal 

firing rate of 30 Hz. The afferent firing rate fAff as a function of stimulus orientation is 

given by a Gaussian distribution added to a baseline 
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where θpr is the preferred orientation of the neuron, θ is the orientation of the stimulus, 

σ=27.5° for excitatory cells and σ=35° for inhibitory cells, and fbase = 0.1 for both 

inhibitory and excitatory cells alike. The preferred orientation θpr as a function of cortical 

position was chosen according to the optically recorded orientation maps, or, for 

comparison, according to the orientation map from McLaughlin et al7. The latter consists 

of four pinwheels with alternating ‘handedness’ with periodic boundary conditions. 

Recurrent input: Recurrent input to the inner neurons is provided via the recurrent 

excitatory (fast and slow component) and inhibitory connections. If input from 

‘surrounding’ neurons is required, this input was given by Poisson processes with the 

time independent firing rate 

,
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whereθ pr is the preferred orientation at the map location from which the postsynaptic 

neuron receives its recurrent input from, θ  is the orientation of the stimulus, and σ = 20°. 

No self-consistency was enforced with the firing rate of the inner neurons, but for all 

simulation results shown in this paper the maximal firing rate of the ‘surrounding’ 

neurons did not differ by more than 5 Hz from the firing rate averaged over all inner 

neurons with θpr= θ. 

Analysis of the membrane potential, the firing rate and the excitatory and inhibitory 

conductances. The network was simulated (Matlab; Mathworks, Natick, MA; fixed step 

size of ∆t= 0.25 ms) until it reached a stationary state (~200 ms). Then the membrane 
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potential, the afferent conductances, the recurrent excitatory and recurrent inhibitory 

conductances, and the conductances of the non-inactivating K+-current were recorded for 

each neuron for a period of 2 s. This was done for nine different stimulus orientations 

equidistant between –80° and +80°. Then spikes were counted, the average membrane 

potential trace was calculated after removing the spikes from each trace (2 ms before and 

4 ms after the peak of each spike). To quantify the position of each neuron in the 

orientation map, the local input OSI for the preferred orientation map was calculated (see 

single cell model). The mean membrane potential, the firing rate and the conductance 

tuning for all pinwheel (0.1 < OSI < 0.3) and orientation domain (0.8 > OSI > 0.6) 

neurons were always calculated only for neurons having a preferred orientation differing 

no more than 3° from the stimulus orientation θ. Afferent and recurrent excitatory 

synaptic conductances (but not background) were pooled for the total excitatory 

conductance. Recurrent inhibitory synaptic conductances (but not background) and the 

time-averaged conductance ngg MM =  of the non-inactivating K+ current were pooled for 

the total inhibitory conductance. After the network reached its stationary state, the 

membrane potential, the firing rate and the excitatory, inhibitory, and total conductances 

were normalized as follows: 
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Here, f(θ;x) is the firing rate of a neuron at location x in response to stimulus θ and fbg(x) 

is the firing rate of that without visual stimulation. The ( )xg E
Aff ;θ , ( )xg E

Rec ;θ , ( )xg I
Rec ;θ , 

and ( )xg I
M ;θ  are the time-averaged conductances for the afferent excitation, the 

recurrent excitation, the recurrent inhibition and the non-inactivating K+ current of an 

excitatory neuron at location x when the stimulus θ is presented. The OSIs of all 

normalized tuning curves were then calculated individually for all cells and were either 

averaged over the population of pinwheel and orientation domain neurons (Fig. 5d and 

Supplementary Fig. 4) or plotted as a function of the local input OSI (Fig. 5e,f). 

Supplementary Fig. 4 shows the tuning curves for the inhibitory conductances, the 

excitatory conductances, the membrane potential and the firing rate for pinwheel and 

orientation domain locations. Supplementary Fig. 5 shows the considerable effect of 

varying the strength of the afferent vs. the recurrent conductance. Using the parameters 

above, including balanced recurrent excitation and inhibition, we find a strong increase in 

the OSI of the membrane potential but little increase in the OSI of the firing rate 

(Wilcoxon rank sum test: p>0.1) in orientation domains compared to pinwheels. Our 

model is operating in a regime where recurrent excitation significantly contributes to the 

responses of neurons; the model regime is not in a ‘marginal phase’8, where the afferent 
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input ‘selects’ predefined response patterns and where the tuning width is strongly 

determined by the tuning of intracortical inputs. In the model’s parameter regime, 

predetermined response patterns or ‘attractor states’ do not exist and weakly tuned 

afferent input is not sharpened. Rather, moderately tuned afferent input is sharpened by 

the cortical network: whereas the afferent input has a half width at half height (HWHH) 

of 32.4°, the tuning of the cortical excitatory cells shows a significantly narrower range of 

tuning, with an average HWHH of 26.1°. On the other hand, if we change parameters 

such that we use a much stronger recurrent inhibition (dashed lines in Supplementary 

Fig. 5), while at the same time increasing the afferent excitatory strength7, the model 

produces sharpening of the membrane potential and of the firing rate tuning in pinwheels. 

In this feedforward regime, the OSI of excitatory conductance tuning changes little with 

map location, because excitation is predominantly feedforward, whereas the OSI of the 

inhibitory conductance is larger in the domains than close to pinwheels, because most of 

the inhibitory conductance is derived from lateral connections. The broad inhibition in 

the pinwheel region then accounts for the sharpening of the tuning curve of the spike 

response and the membrane potential at pinwheels. The feedforward mode, however, is 

not supported by the data, as it would require the OSI of ge to remain approximately 

constant with map location. In particular, the slope of ge for the feedforward regime does 

not fall within the 95% confidence interval from the measured values. Furthermore, this 

parameter regime predicts location-dependent spike tuning, with sharper orientation 

tuning at pinwheels compared to orientation domains, which is not observed 

experimentally.  
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Supplementary Figure Legends 

Supplementary Fig. 1.  Examples of data used to measure synaptic conductances and 

passive neuronal properties. (a) Two raw traces (resting and during -0.2 nA current 

injection) of a cell’s response to visual stimulation for each of 8 orientations and two 

directions (upper and lower row). For each cell, the same protocol was performed under 

3-4 different levels of intracellularly injected current, and repeated 3-5 times. In this 

example, data was neither adjusted for junction potential nor for series resistance 

compensation. (b) Current-voltage relationships for the same cell as in a, obtained every 

stimulus cycle and used to monitor the cell’s biophysical properties. Traces consist of 3 

averaged runs of 6 steps of current injection (range -0.3 to 0.2 nA, 100 ms duration). 

Supplementary Fig. 2.  Analysis of accuracy of pinwheel targeting.  (a)  Orientation 

angle maps in the region of the map immediately surrounding each of our pinwheel 

center recording sites.  The left panel in each case is the angle map computed from all 

eight stimulus orientations, which were used in all analysis.  The right panels show the 

maps computed from only the four cardinal stimulus orientations (shown schematically at 

the top of the figure).  The circle on each map is centered on the location of the pinwheel 

in the eight orientation map, and has a radius of 38 µm.  None of the pinwheel locations 

in the four orientation maps falls outside this circle, and many fall on exactly the same 

pixel.  There is some variability in the location of other, non-targeted pinwheel centers, as 

demonstrated by the black arrows in case 5.  However, the orientation representation near 

the recording locations is extremely stable.  These figures attest to our choosing 

extremely stable sites for intracellular recordings.  The scale bar represents 500 µm.  (b)  

Effect of random errors in electrode targeting on the analysis of the OSI of the local map.  
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Top three panels are histograms of the slope of linear fits to the relationship between g 

OSI and map OSI calculated from 500 randomly offset locations surrounding our 

determination of the actual recording site.  The standard deviation (SD) of the gaussian 

distribution from which the random locations were drawn is indicated to the upper left.  

The slope of the real data points is indicated by the downward arrow.  The bottom panel 

plots the mean (+/- SEM) of the distribution of slopes obtained at each value of SD of the 

gaussian distribution.  The mean +1 SD contains the real slope value for all gaussian SDs 

up to 73 µm.   

Supplementary Fig. 3.  Results from the single cell model, demonstrating that inhibition 

balances excitation and produces sharp tuning across the orientation map. (a) Tuning of 

gi and ge as a function of the local input OSI together with the data points from the 

experiments. (b) Tuning of the Vm and spike response as a function of the local input 

OSI. The Vm OSI increases as the local input OSI becomes larger, i. e. as cell locations 

move from a pinwheel center to an orientation domain. The OSI of the spike response, 

however, remains constant. (c) Average OSIs for g, gi, ge, Vm, and the spike response for 

pinwheels (OSI<0.3) and orientation domains (OSI>0.7). (d) Tuning of the excitatory 

conductance (ge, blue curves) and the matched inhibition (gi, red curves) for increasing 

levels of excitation (dashed and continuous lines). The tuning curve for inhibition must 

be scaled in order to balance an increase in total excitation, but its shape remains similar. 

(e) Ratio of the OSIs of gi and ge for an orientation domain (thick line) and a pinwheel 

location (thin line) as a function of the strength of excitation (peak conductance at the 

preferred orientation for an orientation domain neuron). Spike tuning remains constant 
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for a broad range of excitatory strengths if it is properly balanced by inhibition. This is 

shown by the almost constant ratio of OSIs for the conductances. 

Supplementary Fig. 4.  Results from the network model, demonstrating tuned 

conductances and sharp spike tuning at pinwheels and orientation domains. (a) Tuning of 

gi and ge in a pinwheel neuron population and in an orientation domain population. (b) 

Tuning of Vm and spike rate in pinwheels and in orientation domains. 

Supplementary Fig. 5.  Results from the network model, demonstrating that balanced 

recurrent excitation and inhibition are required for location invariant orientation tuning. 

Effects of two different parameterizations of the recurrent synaptic strength are shown.  

(a) Vm and spike rate OSIs as a function of map location. (b) ge and gi OSIs as a function 

of map location. The dashed lines show results of a simulation in which recurrent 

inhibition is particularly strong, and the main synaptic excitatory conductance comes 

from the feedforward afferents7. The solid lines show results of a simulation in which the 

excitatory contributions from afferent and recurrent connections are almost equal and 

inhibition does not dominate. Note that spike tuning is invariant with map location in the 

balanced case but less invariant in the feedforward case. (Solid line: peak afferent 

excitatory conductance to peak recurrent excitatory conductance was approx. 1.3:1;  peak 

recurrent excitatory conductance to peak recurrent inhibitory conductance was approx. 

1:4. Dashed line: peak afferent excitatory conductance to peak recurrent excitatory 

conductance was approx. 3:1; peak recurrent excitatory conductance to peak recurrent 

inhibitory conductance was approx. 1:11).  
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